74 research outputs found

    RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

    Full text link
    We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D correlation volumes for all pairs of pixels, and iteratively updates a flow field through a recurrent unit that performs lookups on the correlation volumes. RAFT achieves state-of-the-art performance. On KITTI, RAFT achieves an F1-all error of 5.10%, a 16% error reduction from the best published result (6.10%). On Sintel (final pass), RAFT obtains an end-point-error of 2.855 pixels, a 30% error reduction from the best published result (4.098 pixels). In addition, RAFT has strong cross-dataset generalization as well as high efficiency in inference time, training speed, and parameter count. Code is available at https://github.com/princeton-vl/RAFT.Comment: fixed a formatting issue, Eq 7. no change in conten

    Learning Stereo from Single Images

    Get PDF
    Supervised deep networks are among the best methods for finding correspondences in stereo image pairs. Like all supervised approaches, these networks require ground truth data during training. However, collecting large quantities of accurate dense correspondence data is very challenging. We propose that it is unnecessary to have such a high reliance on ground truth depths or even corresponding stereo pairs. Inspired by recent progress in monocular depth estimation, we generate plausible disparity maps from single images. In turn, we use those flawed disparity maps in a carefully designed pipeline to generate stereo training pairs. Training in this manner makes it possible to convert any collection of single RGB images into stereo training data. This results in a significant reduction in human effort, with no need to collect real depths or to hand-design synthetic data. We can consequently train a stereo matching network from scratch on datasets like COCO, which were previously hard to exploit for stereo. Through extensive experiments we show that our approach outperforms stereo networks trained with standard synthetic datasets, when evaluated on KITTI, ETH3D, and Middlebury.Comment: Accepted as an oral presentation at ECCV 202

    Active stereo platform: online epipolar geometry update

    Get PDF
    This paper presents a novel method to update a variable epipolar geometry platform directly from the motor encoder based on mapping the motor encoder angle to the image space angle, avoiding the use of feature detection algorithms. First, an offline calibration is performed to establish a relationship between the image space and the hardware space. Second, a transformation matrix is generated using the results from this mapping. The transformation matrix uses the updated epipolar geometry of the platform to rectify the images for further processing. The system has an overall error in the projection of ± 5 pixels, which drops to ± 1.24 pixels when the verge angle increases beyond 10°. The platform used in this project has 3° of freedom to control the verge angle and the size of the baseline

    Semi-Dense 3D Reconstruction with a Stereo Event Camera

    Full text link
    Event cameras are bio-inspired sensors that offer several advantages, such as low latency, high-speed and high dynamic range, to tackle challenging scenarios in computer vision. This paper presents a solution to the problem of 3D reconstruction from data captured by a stereo event-camera rig moving in a static scene, such as in the context of stereo Simultaneous Localization and Mapping. The proposed method consists of the optimization of an energy function designed to exploit small-baseline spatio-temporal consistency of events triggered across both stereo image planes. To improve the density of the reconstruction and to reduce the uncertainty of the estimation, a probabilistic depth-fusion strategy is also developed. The resulting method has no special requirements on either the motion of the stereo event-camera rig or on prior knowledge about the scene. Experiments demonstrate our method can deal with both texture-rich scenes as well as sparse scenes, outperforming state-of-the-art stereo methods based on event data image representations.Comment: 19 pages, 8 figures, Video: https://youtu.be/Qrnpj2FD1e

    Fuzzy Free Path Detection from Disparity Maps by Using Least-Squares Fitting to a Plane

    Full text link
    A method to detect obstacle-free paths in real-time which works as part of a cognitive navigation aid system for visually impaired people is proposed. It is based on the analysis of disparity maps obtained from a stereo vision system which is carried by the blind user. The presented detection method consists of a fuzzy logic system that assigns a certainty to be part of a free path to each group of pixels, depending on the parameters of a planar-model fitting. We also present experimental results on different real outdoor scenarios showing that our method is the most reliable in the sense that it minimizes the false positives rate.N. Ortigosa acknowledges the support of Universidad Politecnica de Valencia under grant FPI-UPV 2008 and Spanish Ministry of Science and Innovation under grant MTM2010-15200. S. Morillas acknowledges the support of Universidad Politecnica de Valencia under grant PAID-05-12-SP20120696.Ortigosa Araque, N.; Morillas Gómez, S. (2014). Fuzzy Free Path Detection from Disparity Maps by Using Least-Squares Fitting to a Plane. Journal of Intelligent and Robotic Systems. 75(2):313-330. https://doi.org/10.1007/s10846-013-9997-1S313330752Cai, L., He, L., Xu, Y., Zhao, Y., Yang, X.: Multi-object detection and tracking by stereovision. Pattern Recognit. 43(12), 4028–4041 (2010)Hikosaka, N., Watanabe, K., Umeda, K.: Obstacle detection of a humanoid on a plane using a relative disparity map obtained by a small range image sensor. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 3048–3053 (2007)Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Fast stixel computation for fast pedestrian detection. In: ECCV, CVVT workshop, October (2012)Huang, Y., Fu, S., Thompson, C.: Stereovision-based object segmentation for automotive applications. EURASIP J. Appl. Signal Process. 2005(14), 2322–2329 (2005)Duan, B.B., Liu, W., Fu, P.Y., Yang, C.Y., Wen, X.Z., Yuan, H.: Real-time on-road vehicle and motorcycle detection using a single camera. In: IEEE International Conference on Industrial Technology, pp. 579–584. IEEE (2009)Oliveira L, Nunes, U.: On integration of features and classifiers for robust vehicle detection. In: IEEE International Conference on Intelligent Transportation Systems, pp. 414–419. IEEE (2008)Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection: A review. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 694–711 (2006)Sun, H.J., Yang, J.Y.: Obstacle detection for mobile vehicle using neural network and fuzzy logic. Neural Netw. Distrib. Process. 4555(1), 99–104 (2001)Hui, N.B., Pratihar, D.K.: Soft computing-based navigation schemes for a real wheeled robot moving among static obstacles. J. Intell. Robot. Syst. 51(3), 333–368 (2008)Menon, A., Akmeliawati, R., Demidenko, S.: Towards a simple mobile robot with obstacle avoidance and target seeking capabilities using fuzzy logic. In: Proceedings IEEE Instrumentation and Measurement Technology Conference, vol. 1–5, pp. 1003–1008 (2008)Moreno-Garcia, J., Rodriguez-Benitez, L., Fernandez-Caballero, A., Lopez, M.T.: Video sequence motion tracking by fuzzification techniques. Appl. Soft Comput. 10(1), 318–331 (2010)Nguyen, T.H., Nguyen, J.S., Pham, D.M., Nguyen, H.T.: Real-time obstacle detection for an autonomous wheelchair using stereoscopic cameras. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007(1), 4775–4778 (2007)Nguyen, J.S., Nguyen, T.H., Nguyen, H.T.: Semi-autonomous wheelchair system using stereoscopic cameras. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1–20, pp. 5068–5071 (2009)Grosso, E., Tistarelli, M.: Active/dynamic stereo vision. IEEE Trans. Pattern Anal. Mach. Intell. 17(9), 868–879 (1995)Kubota, S., Nakano, T., Okamoto, Y.: A global optimization for real-time on-board stereo obstacle detection systems. In: IEEE Intelligent Vehicles Symposium, pp. 7–12. IEEE (2007)Ortigosa, N., Morillas, S., Peris-Fajarnés, G., Dunai, L.: Fuzzy free path detection based on dense disparity maps obtained from stereo cameras. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 20(2), 245–259 (2012)Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Auton. Robot. 8(2), 161–171 (2000)Badino, H., Mester, R., Vaudrey, T., Franke, U.: Stereo-based free space computation in complex traffic scenarios. In: IEEE Southwest Symposium on Image Analysis & Interpretation, pp. 189–192 (2008)Hoilund, C., Moeslund, T.B., Madsen, C.L., Trivedi, M.M.: Free space computation from stochastic occupancy grids based on iconic kalman filtered disparity maps. In: Proceedings International Conference on Computer Vision Theory and Applications, vol. 1, pp. 164–167 (2010)Franke, U., Joos, A.: Real-time stereo vision for urban traffic scene understanding. In: IEEE Intelligent Vehicles Symposium, pp. 273–278. IEEE (2000)Wedel, A., Badino, H., Rabe, C., Loose, H., Franke, U., Cremers, D.: B-spline modeling of road surfaces with an application to free-space estimation. IEEE Trans. Intell. Transp. Syst. 10(4), 572–583 (2009)Vergauwen, M., Pollefeys, M., Van Gool, L.: A stereo-vision system for support of planetary surface exploration. Mach. Vis. Appl. 14(1), 5–14 (2003)Tarel, J.P., Leng, S.S., Charbonnier, P.: Accurate and robust image alignment for road profile reconstruction. In: IEEE International Conference on Image Processing, pp. 365–368. IEEE (2007)Kostavelis, I., Gasteratos, A.: Stereovision-based algorithm for obstacle avoidance. In: Lecture Notes in Computer Science, pp. 195–204. Intelligent Robotics and Applications (2009)Cerri, P., Grisleri, P.: Free space detection on highways using time correlation between stabilized sub-pixel precision ipm images. In: IEEE International Conference on Robotics and Automation, pp. 2223–2228. IEEE (2005)Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereo vision on non-flat road geometry through v-disparity representation. In: IEEE Intelligent Vehicle Symposium, pp. 646–651. INRIA (2002)Ortigosa, N., Morillas, S., Peris-Fajarnés, G., Dunai, L.: Disparity maps for free path detection. In: Proceedings International Conference on Computer Vision Theory and Applications, vol. 1, pp. 310–315 (2010)Ortigosa, N., Morillas, S., Peris-Fajarnés, G.: Obstacle-free pathway detection by means of depth maps. J. Intell. Robot. Syst. 63(1), 115–129 (2011)http://www.casblip.comBach y Rita, P., Collins, C., Sauders, B., White, B., Scadden, L.: Vision substitution by tactile image projection. Nature 221, 963964 (1969)Sampaio, E., Maris, S., Bach y Rita, P.: Brain plasticity: visual acuity of blind persons via the tongue. Brain Res. 908, 204207 (2001)http://www.seeingwithsound.comCapelle, C., Trullemans, C., Arno, P., Veraart, C.: A real-time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Trans. Biomed. Eng. 45, 12791293 (1998)Lee, S.W., Kang, S.K., Lee, S.A.: A walking guidance system for the visually impaired. Int. J. Pattern Recognit. 22, 11711186 (2008)Chen, C.L., Liao, Y.F., Tai, C.L.: Image-to-midi mapping based on dynamic fuzzy color segmentation for visually impaired people. Pattern Recognit. Lett. 32, 549–560 (2011)Lombardi, P., Zanin, M., Messelodi, S.: Unified stereovision for ground, road, and obstacle detection. In: Proceedings on the Intelligent Vehicles Symposium, 2005, pp. 783–788. IEEE (2005)Yu, Q., Araujo, H., Wang, H.: Stereo-vision based real time obstacle detection for urban environments. In: Proceedings on the International Conference of Advanced Robotics, vol. 1, pp. 1671–1676 (2003)Benenson, R., Timofte, R., Van Gool, L.: Stixels estimation without depth map computation. In: ICCV, CVVT workshop (2011)Li, X., Yao, X., Murphey, Y.L., Karlsen, R., Gerhart, G.: A real-time vehicle detection and tracking system in outdoor traffic scenes. In: Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, vol. 2, pp. 761–764 (2004)Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)Dhond, U.R., Aggarwal, J.K.: Structure from stereo: a review. IEEE Trans. Syst. Man Cybern. 19, 1489–1510 (1989)Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1/2/3), 7–42 (2002)Middlebury Stereo Vision Page. http://vision.middlebury.edu/stereo/Birchfield, S., Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. Int. J. Comput. Vis. 17(3), 269–293 (1999)Lawrence Zitnick, C., Bing Kang, S.: Stereo for image-based rendering using image over-segmentation. Int. J. Comput. Vis. 75(1), 49–65 (2007)Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vis. 70(1), 41–54 (2006)Yang, Q., Wang, L., Yang, R., Stewnius, H., Nistr, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 492–504 (2009)Gehrig, S., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. Lect. Notes Comput. Sci. 5815/2009, 134–143 (2009)Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic scene flow computation for 3d motion understanding. Int. J. Comput. Vis. 95, 29–51 (2011)Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)Leung, C., Appleton, B., Sun, C.: Iterated dynamic programming and quadtree subregioning for fast stereo matching. Image Vis. Comput. 26(10), 1371–1383 (2008)Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, ISBN: 0521540518 (2004)Spiegel, M.R., Stepthens, L.J.: Statistics, 4th edn. Mc Graw Hill (2008)Kerre, E.E.: Fuzzy sets and approximate reasoning. Xian Jiaotong University Press (1998)Dubois, D., Prade, H.: Fuzzy sets and systems: theory and applications. Academic Press, New York (1980)Lee, C.C.: Fuzzy logic in control systems: Fuzzy logic controller-parts 1 and 2. IEEE Trans. Syst. Man Cybern. 20(2), 404–435 (1990)Fodor, J.C.: A new look at fuzzy-connectives. Fuzzy Sets Syst. 57(2), 141–148 (1993)Nalpantidis, L., Gasteratos, A.: Stereo vision for robotic applications in the presence of non-ideal lightning conditions. Image Vis. Comput. 28(6), 940–951 (2010

    Stereo Processing by Semiglobal Matching and Mutual Information

    No full text

    Road Surface Segmentation based on Vertically Local Disparity Histogram for Stereo Camera

    No full text

    Place Recognition Based Visual Localization Using LBP Feature and SVM

    No full text

    Real-time correllation - based stereo vision with reduced error borders

    No full text
    The research reported here describes an approach to real-time stereo vision using non specialised computer equipment. In particular the new methods improve standard correlation considerably. The extensive results presented in terms of performance allow us to use simple cameras to perform excellent image analysis. This work has been used and extended by one of the authors in real applications for mobile robots. The paper appeared in one of the leading journals in Computer Vision with an impact factor of 6.085
    • …
    corecore